Skip to main content

Area Between Two Curves Using Integration | Class 12 Math Notes Study Material Download Free PDF

As we all know, integration means calculating the area by dividing the region into many elementary strips and then adding up these elemental areas. We can calculate the area bounded by a curve and a line between a given set of points at this stage. In the upcoming discussion, you will learn how to find the enclosed area between two curves in calculus with two cases and examples.

What is the Area Between Two Curves?

We know that the area is the quantity used to express the region occupied by the two-dimensional shapes in the planar lamina. In calculus, the evaluate the area between two curves, it is necessary to determine the difference of definite integrals of a function. The area between the two curves or functions is defined as the definite integral of one function, say f(x), minus the definite integral of other functions, say g(x) with the lower and upper bounds as a and b, respectively. Thus, it can be represented as the following:

Area between two curves = ∫a[f(x) – g(x)] dx

How to Find the Area Between Two Curves?

Case 1: Consider two curves y = f(x) and y = g(x), where f(x) ≥ g(x) in [a, b]. In the given case, the point of intersection of these two curves can be given as x = a and x = b, by obtaining the given values of y from the equation of the two curves.

Find the Area Between Two Curves

Our aim is to find the enclosed area between the two given curves. In order to do so, a thin vertical strip of width dx is taken between the lines x = a and x = b as shown in the figure. The height of this vertical strip is given as f(x) – g(x). So, the elementary area of this strip dA can be given as [f(x) – g(x)]dx.

Now, we know that the total area is made up of vary large number of such strips, starting from x = a to x = b. Hence, the total enclosed area A, between the curves is given by adding the area of all such strips between a and b:

A=ab[f(x)g(x)]dx

The enclosed area between two curves can also be calculated in the following manner,

A = (area bounded by the curve y = f(x), x-axis and the lines x = a and x = b) – (area bounded by the curve y = g(x), x-axis and the lines x = a and x = b)

A=abf(x)dxabg(x)dx=ab[f(x)g(x)]dx

where f(x) ≥ g(x), in [a,b]

Case 2: Consider another case, when two curves y = f(x) and y = g(x) are given, such that f(x) ≥ g(x) between x = a and x = c and f(x) ≤ g(x) between x = c and x = b, as shown in the figure.

Area Between Two Curves Using Integration

In this case to calculate the total area between the two curves, the sum of the areas of the region ACBDA and BPRQB is calculated i.e.

Total area=ac[f(x)g(x)]dx+cb[g(x)f(x)]dx

Area Between Two Curves Formula

Formula for area between two curves, integrating on the x-axis is given as:

A=x1x2[f(x)g(x)]dx

The function with the greater value of y for a given x is taken to be the upper function, i.e. f(x) and the function with the smaller value of y for a given x is taken to be the upper function, i.e. g(x). Also, it is possible that the upper and the lower functions can be different based on the different regions on the graph. In such cases, we need to calculate the area for the individual region.
Formula for area between two curves, integrating on the y-axis is given as:

A=y1y2[u(y)v(y)]dy

The function with the greater value of x for a given y is taken to be the right function, i.e. u(y) and the function with the smaller value of x for a given y is taken to be the left function, i.e. v(y). Also, it is possible that the left and right functions can be different based on the different regions on the graph. In such cases, we need to calculate the area for the individual region.

Area Between Two Curves Examples

Let us consider an example that will give a better understanding.

Example: 1

Find the area of the region bounded by the parabolas y = x2 and x = y2.

Solution:

When the graph of both the parabolas is sketched we see that the points of intersection of the curves are (0, 0) and (1, 1) as shown in the figure below.

Area Between Two Curves Examples
So, we need to find the area enclosed between these points which would give us the area between two curves. Also, in the given region as we can see,

y = x= g(x)

and

x = y2

or, y = √x = f(x).

As we can see in the given region,

The area enclosed will be given as,

A=01[f(x)g(x)]dx

=01[xx2]dx

=[23x3/2x33]01

=2313

=13sq.units

Example 2:

Find the area bounded by curves (x – 1)2 + y2 = 1 and x2 + y2 = 1.

Solution:

Given equations of curves:

x2 + y2 = 1 ….(i)

(x – 1)2 + y2 = 1 ….(ii)

From (i),

y2 = 1 – x2

By substituting it in equation (2), we get;

(x – 1)2 + 1 – x2 = 1

On further simplification

(x – 1)2 – x2 = 0

Using the identity a2 – b2 = (a – b)(a + b),

(x – 1 – x) (x – 1 + x) = 0

-1(2x – 1) = 0

– 2x + 1 = 0

2x = 1

x = 1/2

Using this in equation (1) we get;

y = ± √3/2

Thus, both the equations intersect at point A (1/2, √3/2) and B (1/2, -√3/2).

Also, (0, 0) is the centre of first circle and radius 1

Similarly, (1, 0) is the centre of second circle and radius is 1.

Find the area bounded by curves (x – 1)2 + y2 = 1 and x2 + y2 = 1.

Here, both the circles are symmetrical about x-axis and the required area is shaded here.

So, the required area = area OACB

= 2 (area OAC)

= 2 [area of OAD + area DCA]

Area between two curves example solution

Area Between Two Curves Problems

Go through the practice problems given below to understand more about the method of finding the area of between two curves.

  1. Find the area bounded by two curves x2 = 6y and x2 + y2 = 16.
  2. Find the area of the region enclosed between the two circles: x2 + y2 = 4 and (x – 2)2 + y2 = 4.
  3. Draw a rough sketch of the region {(x, y): y2 ≤ 3x, 3x2 + 3y2 ≤ 16} and find the area enclosed by the region, using the method of integration.

Comments

Popular posts from this blog

Symmetric & Skew Symmetric Matrix-Properties, Solved Examples, Class 12 Matrices Chapter Notes Study Material Download pdf

A symmetric matrix and skew-symmetric matrix both are square matrices. But the difference between them is, the symmetric matrix is equal to its transpose whereas skew-symmetric matrix is a matrix whose transpose is equal to its negative. If A is a symmetric matrix, then A = A T   and if A is a skew-symmetric matrix then A T  = – A. Table of Contents Symmetric Matrix Properties of Symmetric Matrix Skew Symmetric Matrix Properties of Skew Symmetric Matrix Determinant of Skew Symmetric Matrix Eigenvalue of Skew Symmetric Matrix Frequently Asked Questions-FAQs What is a symmetric matrix? How do you know if a matrix is symmetric? Give an Example of a Matrix Which is Symmetric but not Invertible. Is Symmetric Matrix Diagonalizable? What is skew-symmetric matrix? What is the difference between symmetric and skew-symmetric matrix? Symmetric Matrix To understand if a matrix is a symmetric matrix, it is very important to know about transpose of a matrix and how to find it. If we in...

Onto Functions(Surjective Functions)-Definition, Graph, Properties, Solved Examples, FAQs

  Onto Function is one of the many types of functions defined based on the relationship between its domain and codomain. For any function to be onto, it needs to relate two sets with a very specific mapping between elements, meaning that each element of the codomain has at least one element in the domain as its pre-image. In simple words, for any function, if all the elements of the codomain are mapped to some element of the domain, then the function is said to be an onto function.  In this article, we will discuss the concept of onto or surjective function in detail including its definition, example, and many more. We will also discuss key differences between one one, onto and into functions as well. Table of Contents What is an Onto Function? Onto Function Definition Representation for Onto Function Examples of Onto Function Properties of Onto Function Composition of Onto Function Onto Function Graph Number of Onto Functions One to One and Onto Functions Onto and Into Functi...

Transpose of a Matrix-Addition & Multiplication Property of Transpose, Solved Examples, Class 12 Matrices Chapter Notes Study Material Download pdf

Transpose of a matrix is one of the most commonly used methods in matrix transformation. For a given matrix, the transpose of a matrix is obtained by interchanging rows into columns or columns to rows. In this article, we are going to learn the definition of the transpose of a matrix, steps to find the transpose of a matrix, properties and examples with a complete explanation. Before learning how to find the transpose of a matrix, first let us learn, what a matrix is? Table of Contents What is a Matrix? Transpose of a Matrix Definition How to Find the Transpose of a Matrix? Properties of Transpose of a Matrix (i) Transpose of the Transpose Matrix (ii) Addition Property of Transpose (iii) Multiplication by Constant (iv) Multiplication Property of Transpose Transpose of a Matrix Examples Practice Problems Frequently Asked Questions What is the transpose of a matrix? How to calculate the transpose of a Matrix? What is the Addition Property of Transpose? What is the Multiplication Property...