Skip to main content

Conditional Probability, Solved Examples | Class 12 Math Notes Study Material Download Free PDF

 Imagine a student who takes leave from school twice a week excluding Sunday. If it is known that he will be absent from school on Tuesday then what are the chances that he will also take a leave on Saturday in the same week? It is observed that in problems where the occurrence of one event affects the happening of the following event. These cases of probability are known as conditional probability. Let us learn its definition mathematically.

Conditional Probability Definition

The probability of occurrence of any event A when another event B in relation to A has already occurred is known as conditional probability. It is depicted by P(A|B).

Conditional Probability, Solved Examples
As depicted by above diagram, sample space is given by S and there are two events A and B. In a situation where event  B has already occurred, then our sample space S  naturally gets reduced to  B because now the chances of occurrence of an event will lie inside B.

As we have to figure out the chances of occurrence of event A, only portion common to both A and  B is enough to represent the probability of occurrence of A, when B has already occurred. Common portion of the events is depicted by the intersection of both the events  A and B i.e. A ∩ B.

This explains the concept of conditional probability problems i.e. occurrence of any event when another event in relation to has already occurred.

Conditional Probability Formula

Mathematically this can be represented as,

P(A|B) = N(A∩B)/N(B)

Where P(A|B) represents the probability of occurrence of A given B has occurred.

N(A ∩ B) is the number of elements common to both A and B.

N(B) is the number of elements in B and it cannot be equal to zero.

Let N represent the total number of elements in the sample space.

P(A|B) = N(AB)NN(B)N

Since N(A ∩ B)/N and N(B)/N denotes the ratio of the number of favourable outcomes to the total number of outcomes, therefore, it indicates the probability.

Therefore, N(A ∩ B)/N can be written as P(A ∩ B) and N(B)/N as P(B).

⇒ P(A|B) = P(A ∩ B)/P(B)

Therefore, P(A ∩ B) = P(B) P(A|B) if P(B) ≠ 0

                                     = P(A) P(B|A) if P(A) ≠ 0

Similarly, the probability of occurrence of B when A has already occurred is given by,

P(B|A) = P(B ∩ A)/P(A)

To have a better insight let us practice some conditional probability examples.

Conditional Probability Properties

Property 1: Let E and F be events of a sample space S of an experiment, then we have P(S|F) = P(F|F) = 1.

Property 2: f A and B are any two events of a sample space S and F is an event of S such that P(F) ≠ 0, then P((A ∪ B)|F) = P(A|F) + P(B|F) – P((A ∩ B)|F).

Property 3: P(A′|B) = 1 − P(A|B)

Conditional Probability Example

Example:  Two dies are thrown simultaneously and the sum of the numbers obtained is found to be 7. What is the probability that the number 3 has appeared at least once?

Solution: The sample space S would consist of all the numbers possible by the combination of two dies. Therefore S consists of 6 × 6 i.e. 36 events.

Event A indicates the combination in which 3 has appeared at least once.

Event B indicates the combination of the numbers which sum up to 7.

A = {(3, 1), (3, 2), (3, 3)(3, 4)(3, 5)(3, 6)(1, 3)(2, 3)(4, 3)(5, 3)(6, 3)}

B = {(1, 6)(2, 5)(3, 4)(4, 3)(5, 2)(6, 1)}

 P(A) = 11/36

P(B) = 6/36

A ∩ B = 2

P(A ∩ B) = 2/36

Applying the conditional probability formula we get,

P(A|B) = P(AB)P(B) = 236636 = 

Comments

Popular posts from this blog

Symmetric & Skew Symmetric Matrix-Properties, Solved Examples, Class 12 Matrices Chapter Notes Study Material Download pdf

A symmetric matrix and skew-symmetric matrix both are square matrices. But the difference between them is, the symmetric matrix is equal to its transpose whereas skew-symmetric matrix is a matrix whose transpose is equal to its negative. If A is a symmetric matrix, then A = A T   and if A is a skew-symmetric matrix then A T  = – A. Table of Contents Symmetric Matrix Properties of Symmetric Matrix Skew Symmetric Matrix Properties of Skew Symmetric Matrix Determinant of Skew Symmetric Matrix Eigenvalue of Skew Symmetric Matrix Frequently Asked Questions-FAQs What is a symmetric matrix? How do you know if a matrix is symmetric? Give an Example of a Matrix Which is Symmetric but not Invertible. Is Symmetric Matrix Diagonalizable? What is skew-symmetric matrix? What is the difference between symmetric and skew-symmetric matrix? Symmetric Matrix To understand if a matrix is a symmetric matrix, it is very important to know about transpose of a matrix and how to find it. If we in...

Onto Functions(Surjective Functions)-Definition, Graph, Properties, Solved Examples, FAQs

  Onto Function is one of the many types of functions defined based on the relationship between its domain and codomain. For any function to be onto, it needs to relate two sets with a very specific mapping between elements, meaning that each element of the codomain has at least one element in the domain as its pre-image. In simple words, for any function, if all the elements of the codomain are mapped to some element of the domain, then the function is said to be an onto function.  In this article, we will discuss the concept of onto or surjective function in detail including its definition, example, and many more. We will also discuss key differences between one one, onto and into functions as well. Table of Contents What is an Onto Function? Onto Function Definition Representation for Onto Function Examples of Onto Function Properties of Onto Function Composition of Onto Function Onto Function Graph Number of Onto Functions One to One and Onto Functions Onto and Into Functi...

Transpose of a Matrix-Addition & Multiplication Property of Transpose, Solved Examples, Class 12 Matrices Chapter Notes Study Material Download pdf

Transpose of a matrix is one of the most commonly used methods in matrix transformation. For a given matrix, the transpose of a matrix is obtained by interchanging rows into columns or columns to rows. In this article, we are going to learn the definition of the transpose of a matrix, steps to find the transpose of a matrix, properties and examples with a complete explanation. Before learning how to find the transpose of a matrix, first let us learn, what a matrix is? Table of Contents What is a Matrix? Transpose of a Matrix Definition How to Find the Transpose of a Matrix? Properties of Transpose of a Matrix (i) Transpose of the Transpose Matrix (ii) Addition Property of Transpose (iii) Multiplication by Constant (iv) Multiplication Property of Transpose Transpose of a Matrix Examples Practice Problems Frequently Asked Questions What is the transpose of a matrix? How to calculate the transpose of a Matrix? What is the Addition Property of Transpose? What is the Multiplication Property...