Skip to main content

Differential Calculus & Approximation | Tangent Line Approximation, Class 12 Math Notes Study Material Download Free PDF

 In mathematics, differential calculus is a branch of mathematics that deals with the process of finding the derivative of a function. It is the study of the rate of change of quantities with respect to other variables.

The process of finding the derivative of the given function is called the differentiation. The concept of differential calculus is basically about cutting something into smaller pieces to find the rate of change. In general, if an equation involves the derivative of the dependent variable with respect to the independent variable, then it is called the differential equation.

dy/dx = f(x)

In this case, “x” is an independent variable and “y” is a dependent variable.

Generally, the derivatives are used to determine the followings:

  • It is used to find the rate of change of quantities.
  • It is used to find the equation of a tangent and a normal to a curve at a point.
  • It is used to find the turning point on the graph function, which helps to locate the point where the largest or smallest value of the function occurs.
  • It is used to find the intervals where the function is increasing or decreasing.
  • It is used to find the approximate value of certain quantities.

For example, find the rate of change of the area of a circle per second with respect to the radius, when r is 5 cm.

We know that the area of a circle is A = πr2.

Therefore, the rate of change of area with respect to the radius is given by:

dA/dr = (d/dr)( πr2)

dA/dr = 2Ï€r

When r = 5 cm, then it becomes

dA/dr = 10Ï€

Hence, the area of a circle is changing at the rate of 10Ï€ cm2/s.

Differential Calculus Approximations

Now, let us have a look at the differentials which are used to approximate certain quantities. Let a function f in x be defined such that f: D →R, D ⊂ R. Let y = f(x). Let a small increase in x be denoted by ∆x. If x increases by ∆x then the corresponding increase in y is given by ∆y = f(x + ∆x) – f(x).

Based on the above discussion, we can define the following:

  • The differential of x which is represented as dx is given by dx = ∆x.
  • Differential of y which is represented as dy is given by dy = f’(x)dx = (dy/dx) ∆x.

If in case the differential of x or dx = ∆x is comparatively very insignificant in comparison to x then dy is a good approximation of ∆y and dy ≈ ∆y.

From the above discussion, it can be observed that differential of the independent variable is equal to the increase in the variable, but on the other hand, the differential of the dependent variable is not equal to the increase of the variable.

Let us look into the examples to have a better insight.

Approximation Examples

Example 1:

Approximate

25.5

using differential.

Solution:

Let us consider y =

x

, where x = 25 and ∆x = 0.5. Then,

∆y =

x+xx

∆y =

25.525

∆y =

25.55

25.5=y+5

Since dy is approximately equal to ∆y, therefore

dy=dydxx=12x(0.5)=0.05

Therefore, the approximate value of

25.5=5+0.05=5.05

Example 2:

Find the approximate value of the function f(3.02), where f(x) is given as 3x2+5x+3.

Solution:

Given that, f(x) = 3x2+5x+3

Assume x = 3, and ∆x = 0.02.

Hence, we can write the given function as:

f (3. 02) = f (x + ∆x) = 3(x + ∆x)2 + 5(x + ∆x) + 3

We know that,

∆y = f (x + ∆x) – f (x). 

The above expression can be written as

f (x + ∆x) = f (x) + ∆y

As, dx = ∆x, it can be approximately written as f (x) + f ′(x) ∆x

Hence, f (3.02) ≈ (3x2 + 5x + 3) + (6x + 5) ∆x

Now, substitute the values of x and ∆x, we get

= (3(3)2 + 5(3) + 3) + (6(3) + 5) (0.02) 

Now, simplify it to get the approximate value

= (27 + 15 + 3) + (18 + 5) (0.02)

= 45 + 0.46 

= 45.46

Therefore, the approximate value of f(3.02) is 45.46.

Practice Problems

Solve the following Problems:

  1. Find the approximate value of (26)⅓ using differentials
  2. Find the approximate value of f(2.01), where f (x) = 4x+ 5x + 2.
  3. Determine the approximate error in calculating the surface area, if the radius of the sphere is measured as 9 cm with an error of 0.03 cm.

Comments

Popular posts from this blog

Symmetric & Skew Symmetric Matrix-Properties, Solved Examples, Class 12 Matrices Chapter Notes Study Material Download pdf

A symmetric matrix and skew-symmetric matrix both are square matrices. But the difference between them is, the symmetric matrix is equal to its transpose whereas skew-symmetric matrix is a matrix whose transpose is equal to its negative. If A is a symmetric matrix, then A = A T   and if A is a skew-symmetric matrix then A T  = – A. Table of Contents Symmetric Matrix Properties of Symmetric Matrix Skew Symmetric Matrix Properties of Skew Symmetric Matrix Determinant of Skew Symmetric Matrix Eigenvalue of Skew Symmetric Matrix Frequently Asked Questions-FAQs What is a symmetric matrix? How do you know if a matrix is symmetric? Give an Example of a Matrix Which is Symmetric but not Invertible. Is Symmetric Matrix Diagonalizable? What is skew-symmetric matrix? What is the difference between symmetric and skew-symmetric matrix? Symmetric Matrix To understand if a matrix is a symmetric matrix, it is very important to know about transpose of a matrix and how to find it. If we in...

Onto Functions(Surjective Functions)-Definition, Graph, Properties, Solved Examples, FAQs

  Onto Function is one of the many types of functions defined based on the relationship between its domain and codomain. For any function to be onto, it needs to relate two sets with a very specific mapping between elements, meaning that each element of the codomain has at least one element in the domain as its pre-image. In simple words, for any function, if all the elements of the codomain are mapped to some element of the domain, then the function is said to be an onto function.  In this article, we will discuss the concept of onto or surjective function in detail including its definition, example, and many more. We will also discuss key differences between one one, onto and into functions as well. Table of Contents What is an Onto Function? Onto Function Definition Representation for Onto Function Examples of Onto Function Properties of Onto Function Composition of Onto Function Onto Function Graph Number of Onto Functions One to One and Onto Functions Onto and Into Functi...

Transpose of a Matrix-Addition & Multiplication Property of Transpose, Solved Examples, Class 12 Matrices Chapter Notes Study Material Download pdf

Transpose of a matrix is one of the most commonly used methods in matrix transformation. For a given matrix, the transpose of a matrix is obtained by interchanging rows into columns or columns to rows. In this article, we are going to learn the definition of the transpose of a matrix, steps to find the transpose of a matrix, properties and examples with a complete explanation. Before learning how to find the transpose of a matrix, first let us learn, what a matrix is? Table of Contents What is a Matrix? Transpose of a Matrix Definition How to Find the Transpose of a Matrix? Properties of Transpose of a Matrix (i) Transpose of the Transpose Matrix (ii) Addition Property of Transpose (iii) Multiplication by Constant (iv) Multiplication Property of Transpose Transpose of a Matrix Examples Practice Problems Frequently Asked Questions What is the transpose of a matrix? How to calculate the transpose of a Matrix? What is the Addition Property of Transpose? What is the Multiplication Property...