Skip to main content

Inverse Trigonometric Identities-Domain, Range, Formulas, Properties, Solved Examples, Class 12 Math Chapter 2 Notes Study Material Download free pdf

In mathematics, inverse trigonometric functions are also known as arcus functions or anti-trigonometric functions. The inverse trigonometric functions are the inverse functions of basic trigonometric functions, i.e., sine, cosine, tangent, cosecant, secant, and cotangent. It is used to find the angles with any trigonometric ratio. Inverse trigonometric functions are generally used in fields like geometry, engineering, etc.

The representation of inverse trigonometric functions are:

If a = f(b), then the inverse function is

 b = f-1(a) 

Examples of inverse inverse trigonometric functions are sin-1x, cos-1x, tan-1x, etc.

What are Inverse Trigonometric Identities?

Inverse trigonometric identities are mathematical expressions involving inverse trigonometric functions such as sin⁡-1(x), cos-1(x), and tan⁡-1(x). These functions provide the angles (or arcs) corresponding to a given trigonometric ratio. The inverse trigonometric identities help in simplifying complex expressions and solving equations involving trigonometric functions.

Domain and Range of Inverse Trigonometric Identities

The following table shows some trigonometric functions with their domain and range.

FunctionDomainRange
y = sin-1 x[-1, 1][-π/2, π/2]
y = cos-1 x[-1, 1][0, π]
y = cosec-1 xR – (-1,1 )[-π/2, π/2] – {0}
y = sec-1 xR – (-1, 1)[0, π] – {π/2}
y = tan-1 xR(-π/2, π/2)
y = cot-1 xR(0, π)

Properties of Inverse Trigonometric Functions

The following are the properties of inverse trigonometric functions:

Property 1:

  1. sin-1 (1/x) = cosec-1 x, for x ≥ 1 or x ≤ -1
  2. cos-1 (1/x) = sec-1 x, for x ≥ 1 or x ≤ -1
  3. tan-1 (1/x) = cot-1 x, for x > 0

Property 2:

  1. sin-1 (-x) = -sin-1 x, for x ∈ [-1 , 1]
  2. tan-1 (-x) = -tan-1 x, for x ∈ R
  3. cosec-1 (-x) = -cosec-1 x, for |x| ≥ 1

Property 3

  1. cos-1 (-x) = π – cos-1 x, for x ∈ [-1 , 1]
  2. sec-1 (-x) = π – sec-1 x, for |x| ≥ 1
  3. cot-1 (-x) = π – cot-1 x, for x ∈ R

Property 4

  1. sin-1 x + cos-1 x = π/2, for x ∈ [-1,1]
  2. tan-1 x + cot-1 x = π/2, for x ∈ R
  3. cosec-1 x + sec-1 x = π/2 , for |x| ≥ 1

Property 5

  1. tan-1 x + tan-1 y = tan-1 ( x + y )/(1 – xy), for xy < 1
  2. tan-1 x – tan-1 y = tan-1 (x – y)/(1 + xy), for xy > -1
  3. tan-1 x + tan-1 y = π + tan-1 (x + y)/(1 – xy), for xy >1 ; x, y >0

Property 6

  1. 2tan-1 x = sin-1 (2x)/(1 + x2), for |x| ≤ 1
  2. 2tan-1 x = cos-1 (1 – x2)/(1 + x2), for x ≥ 0
  3. 2tan-1 x = tan-1 (2x)/(1 – x2), for -1 < x <1

Identities of Inverse Trigonometric Function

The following are the identities of inverse trigonometric functions:

  1. sin-1 (sin x) = x provided -π/2 ≤ x ≤ π/2
  2. cos-1 (cos x) = x provided 0 ≤ x ≤ π
  3. tan-1 (tan x) = x provided -π/2 < x < π/2
  4. sin(sin-1 x) = x provided -1 ≤ x ≤ 1
  5. cos(cos-1 x) = x provided -1 ≤ x ≤ 1
  6. tan(tan-1 x) = x provided x ∈ R
  7. cosec(cosec-1 x) = x provided -1 ≤ x ≤ ∞ or -∞ < x ≤ 1
  8. sec(sec-1 x) = x provided 1 ≤ x ≤ ∞ or -∞ < x ≤ 1
  9. cot(cot-1 x) = x provided -∞ < x < ∞
  10. sin−1(2×1+x2)=2tan−1xsin−1(1+x22x​)=2tan−1x
  11. cos−1(1–x21+x2)=2tan−1xcos−1(1+x21–x2​)=2tan−1x
  12. tan−1(2×1–x2)=2tan−1xtan−1(1–x22x​)=2tan−1x
  13. 2cos-1 x = cos-1 (2x2 – 1)
  14. 2sin-1x = sin-1 2x√(1 – x2)
  15. 3sin-1x = sin-1(3x – 4x3)
  16. 3cos-1 x = cos-1 (4x3 – 3x)
  17. 3tan-1x = tan-1((3x – x3/1 – 3x2))
  18. sin-1x + sin-1y = sin-1{ x√(1 – y2) + y√(1 – x2)}
  19. sin-1x – sin-1y = sin-1{ x√(1 – y2) – y√(1 – x2)}
  20. cos-1 x + cos-1 y = cos-1 [xy – √{(1 – x2)(1 – y2)}]
  21. cos-1 x – cos-1 y = cos-1 [xy + √{(1 – x2)(1 – y2)}
  22. tan-1 x + tan-1 y = tan-1(x + y/1 – xy)
  23. tan-1 x – tan-1 y = tan-1(x – y/1 + xy)
  24. tan-1 x + tan-1 y +tan-1 z = tan-1 (x + y + z – xyz)/(1 – xy – yz – zx)

Sample Problems on Inverse Trigonometric Identities

Question 1: Prove sin-1 x = sec-1 1/√(1-x2)

Solution: 

Let sin-1 x = y

⇒ sin y = x , (since sin y = perpendicular/hypotenuse ⇒ cos y = √(1- perpendicular2 )/hypotenuse )

⇒ cos y = √(1 – x2), here hypotenuse = 1

⇒ sec y = 1/cos y

⇒ sec y = 1/√(1 – x2)

⇒ y = sec-1 1/√(1 – x2)

⇒ sin-1 x = sec-1 1/√(1 – x2)

Hence, proved.

Question 2: Prove tan-1 x = cosec-1 √(1 + x2)/x

Solution:

Let tan-1 x = y

⇒ tan y = x , perpendicular = x and base = 1

⇒ sin y = x/√(x+ 1) , (since hypotenuse = √(perpendicular+ base2 ) )

⇒ cosec y = 1/sin y

⇒ cosec y = √(x+ 1)/x

⇒ y = cosec-1 √(x+ 1)/x

⇒ tan-1 x = cosec-1 √(x+ 1)/x

Hence, proved.

Question 3: Evaluate tan(cos-1 x)

Solution: 

Let cos-1 x = y

⇒ cos y = x , base = x and hypotenuse = 1 therefore sin y = √(1 – x2)/1

⇒ tan y = sin y/ cos y

⇒ tan y = √(1 – x2)/x

⇒ y = tan-1 √(1 – x2)/x

⇒ cos-1 x = tan-1 √(1 – x2)/x

Therefore, tan(cos-1 x) = tan(tan-1 √(1 – x2)/x ) = √(1 – x2)/x.

Question 4: tan-1 √(sin x) + cot-1 √(sin x) = y. Find cos y.

Solution: 

We know that tan-1 x + cot-1 x = /2 therefore comparing this identity with the equation given in the question we get y = π/2

Thus, cos y = cos π/2 = 0.

Question 5: tan-1 (1 – x)/(1 + x) = (1/2)tan-1 x, x > 0. Solve for x.

Solution: 

tan-1 (1 – x)/(1 + x) = (1/2)tan-1 x

⇒ 2tan-1 (1 – x)/(1 + x) = tan-1 x     …(1)

We know that, 2tan-1 x = tan-1 2x/(1 – x2).

Therefore, LHS of equation (1) can be written as

tan-1 [ { 2(1 – x)/(1 + x)}/{ 1 – [(1 – x)(1 + x)]2}]

= tan-1 [ {2(1 – x)(1 + x)} / { (1 + x)2 – (1 – x)}]

= tan-1 [ 2(1 – x2)/(4x)]

= tan-1 (1 – x2)/(2x)

Since, LHS = RHS therefore

tan-1 (1 – x2)/(2x) = tan-1 x

⇒ (1 – x2)/2x = x

⇒ 1 – x2 = 2x2

⇒ 3x2 = 1

⇒ x = ± 1/√3

Since, x must be greater than 0 therefore x = 1/√3 is the acceptable answer.

Question 6: Prove tan-1 √x = (1/2)cos-1 (1 – x)/(1 + x)

Solution: 

Let tan-1 √x = y

⇒ tan y = √x

⇒ tan2 y = x

Therefore,

RHS = (1/2)cos-1 ( 1- tany)/(1 + tan2 y)

= (1/2)cos-1 (cos2 y – sin2 y)/(cos2 y + siny)

= (1/2)cos-1 (cos2 y – sin2 y)

= (1/2)cos-1 (cos 2y)

= (1/2)(2y)

= y

= tan-1 √x

= LHS

Hence, proved.

Question 7: tan-1 (2x)/(1 – x2) + cot-1 (1 – x2)/(2x) = π/2, -1 < x < 1. Solve for x.

Solutions: 

tan-1 (2x)/(1 – x2) + cot-1 (1 – x2)/(2x) = π/2

⇒ tan-1 (2x)/(1 – x2) + tan-1 (2x)/(1 – x2) = π/2

⇒ 2tan-1 (2x)/(1 – x2) = ∏/2

⇒ tan-1 (2x)/(1 – x2) = ∏/4

⇒ (2x)/(1 – x2) = tan ∏/4

⇒ (2x)/(1 – x2) = 1

⇒ 2x = 1 – x2

⇒ x2 + 2x -1 = 0

⇒ x = [-2 ± √(22 – 4(1)(-1))] / 2

⇒ x = [-2 ± √8] / 2

⇒ x = -1 ± √2

⇒ x = -1 + √2 or x = -1 – √2

But according to the question x ∈ (-1, 1) therefore for the given equation the solution set is x ∈ ∅.

Question 8: tan-1 1/(1 + 1.2) + tan-1 1/(1 + 2.3) + … + tan-1 1/(1 + n(n + 1)) = tan-1 x. Solve for x.

Solution:  

tan-1 1/(1 + 1.2) + tan-1 1/(1 + 2.3) + … + tan-1 1/(1 + n(n + 1)) = tan-1 x  

⇒ tan-1 (2 – 1)/(1 + 1.2) + tan-1 (3 – 2)/(1 + 2.3) + … + tan-1 (n + 1 – n)/(1 + n(n + 1)) = tan-1 x

⇒ (tan-1 2 – tan-1 1) + (tan-1 3 – tan-1 2) + … + (tan-1 (n + 1) – tan-1 n) = tan-1 x

⇒ tan-1 (n + 1) – tan-1 1 = tan-1 x

⇒ tan-1 n/(1 + (n + 1).1) = tan-1 x

⇒ tan-1 n/(n + 2) = tan-1 x

⇒ x = n/(n + 2)

Question 9: If 2tan-1 (sin x) = tan-1 (2sec x) then solve for x.

Solution: 

2tan-1 (sin x) = tan-1 (2sec x)

⇒ tan-1 (2sin x)/(1 – sin2 x) = tan-1 (2/cos x)

⇒ (2sin x)/(1 – sin2 x) = 2/cos x

⇒ sin x/cos2 x = 1/cos x

⇒ sin x cos x = cos2 x

⇒ sin x cos x – cos2 x = 0

⇒ cos x(sin x – cos x) = 0

⇒ cos x = 0 or sin x – cos x = 0

⇒ cos x = cos π/2 or tan x = tan π/4

⇒ x = π/2 or x = π/4

But at x = π/2 the given equation does not exist hence x = π/4 is the only solution.

Question 10: Prove that cot-1 [ {√(1 + sin x) + √(1 – sin x)}/{√(1 + sin x) – √(1 – sin x)}] = x/2, x ∈ (0, π/4)

Solution: 

Let x = 2y therefore

LHS = cot-1 [{√(1+sin 2y) + √(1-sin 2y)}/{√(1+sin 2y) – √(1-sin 2y)}]

= cot-1 [{√(cos2 y + sin2 y + 2sin y cos y) + √(cos2 y + sin2 y – 2sin y cos y)}/{√(cos2 y + sin2 y + 2sin y cos y) – √(cos2 y + sin2 y – 2sin y cos y)} ] 

= cot-1 [{√(cos y + sin y)2 + √(cos y – sin y)2} / {√(cos y + sin y)2 – √(cos y – sin y)2}] 

= cot-1 [( cos y + sin y + cos y – sin y )/(cos y + sin y – cos y + sin y)] 

= cot-1 (2cos y)/(2sin y)

= cot-1 (cot y)

= y

= x/2.

Practice Problems on Inverse Trigonometric Identities

Problem 1: Solve for x in the equation sin-1(x) + cos-1(x) = π/2

Problem 2: Prove that tan-1(1) + tan-1(2) + tan-1(3) = π

Problem 3: Evaluate cos⁡(sin-1(0.5))

Problem 4: If tan-1(x) + tan-1(2x) = π/4, then find x

Inverse Trigonometric Identities – FAQs

What are inverse trigonometric functions?

Inverse trigonometric functions are the inverse functions of the basic trigonometric functions (sine, cosine, tangent, cosecant, secant, and cotangent). They are used to find the angles corresponding to given trigonometric ratios.

Why are inverse trigonometric functions important?

Inverse trigonometric functions are essential in various fields like geometry, engineering, and physics because they help determine angles from trigonometric ratios, which is crucial for solving many practical problems.

What are the domains and ranges of inverse trigonometric functions?

Each inverse trigonometric function has specific domains and ranges:

sin-1(x) : Domain [-1, 1] and Range [- π/2, π/2]

cos-1(x) : Domain [-1, 1] and Range [ 0, π]

tan⁡-1(x) : Domain R and Range (- π/2, π/2)

Can inverse trigonometric functions be used in calculus?

Yes, inverse trigonometric functions are frequently used in calculus for integration and differentiation. They are particularly useful for integrating functions that involve trigonometric expressions.

Comments

Popular posts from this blog

Symmetric & Skew Symmetric Matrix-Properties, Solved Examples, Class 12 Matrices Chapter Notes Study Material Download pdf

A symmetric matrix and skew-symmetric matrix both are square matrices. But the difference between them is, the symmetric matrix is equal to its transpose whereas skew-symmetric matrix is a matrix whose transpose is equal to its negative. If A is a symmetric matrix, then A = A T   and if A is a skew-symmetric matrix then A T  = – A. Table of Contents Symmetric Matrix Properties of Symmetric Matrix Skew Symmetric Matrix Properties of Skew Symmetric Matrix Determinant of Skew Symmetric Matrix Eigenvalue of Skew Symmetric Matrix Frequently Asked Questions-FAQs What is a symmetric matrix? How do you know if a matrix is symmetric? Give an Example of a Matrix Which is Symmetric but not Invertible. Is Symmetric Matrix Diagonalizable? What is skew-symmetric matrix? What is the difference between symmetric and skew-symmetric matrix? Symmetric Matrix To understand if a matrix is a symmetric matrix, it is very important to know about transpose of a matrix and how to find it. If we in...

Onto Functions(Surjective Functions)-Definition, Graph, Properties, Solved Examples, FAQs

  Onto Function is one of the many types of functions defined based on the relationship between its domain and codomain. For any function to be onto, it needs to relate two sets with a very specific mapping between elements, meaning that each element of the codomain has at least one element in the domain as its pre-image. In simple words, for any function, if all the elements of the codomain are mapped to some element of the domain, then the function is said to be an onto function.  In this article, we will discuss the concept of onto or surjective function in detail including its definition, example, and many more. We will also discuss key differences between one one, onto and into functions as well. Table of Contents What is an Onto Function? Onto Function Definition Representation for Onto Function Examples of Onto Function Properties of Onto Function Composition of Onto Function Onto Function Graph Number of Onto Functions One to One and Onto Functions Onto and Into Functi...

Transpose of a Matrix-Addition & Multiplication Property of Transpose, Solved Examples, Class 12 Matrices Chapter Notes Study Material Download pdf

Transpose of a matrix is one of the most commonly used methods in matrix transformation. For a given matrix, the transpose of a matrix is obtained by interchanging rows into columns or columns to rows. In this article, we are going to learn the definition of the transpose of a matrix, steps to find the transpose of a matrix, properties and examples with a complete explanation. Before learning how to find the transpose of a matrix, first let us learn, what a matrix is? Table of Contents What is a Matrix? Transpose of a Matrix Definition How to Find the Transpose of a Matrix? Properties of Transpose of a Matrix (i) Transpose of the Transpose Matrix (ii) Addition Property of Transpose (iii) Multiplication by Constant (iv) Multiplication Property of Transpose Transpose of a Matrix Examples Practice Problems Frequently Asked Questions What is the transpose of a matrix? How to calculate the transpose of a Matrix? What is the Addition Property of Transpose? What is the Multiplication Property...