Skip to main content

NCERT Solutions Matrices Exercise 3.3 Class 12 Math Chapter 3 free PDF Download

Chapter 3 of the Class 12 NCERT Mathematics textbook, titled “Matrices,” delves into the fundamental concepts of matrices, including their types, operations, and applications. Exercise 3.3 focuses on practical problems involving matrix operations, such as addition, subtraction, and multiplication of matrices. This exercise helps students apply their understanding of matrices to solve various mathematical problems.

NCERT Solutions for Mathematics – Chapter 3 Matrices – Exercise 3.3

This section provides detailed solutions for Exercise 3.3 from Chapter 3 of the Class 12 NCERT Mathematics textbook. The exercise includes a variety of problems related to matrix operations, offering step-by-step explanations to ensure students can effectively solve these problems and grasp the underlying concepts of matrix algebra.

Question 1. Find the transpose of each of the following matrices:

(i) [Tex]

5121
   [/Tex]

(ii) [Tex]

[1213]
[/Tex]

(iii) [Tex]

132553661
[/Tex]

Solution:

(i) Let A =[Tex]

5121
[/Tex]

∴Transpose of A = A’ = A = [Tex]

[5121]
[/Tex]

(ii) Let A =[Tex]

[1213]
[/Tex]

∴Transpose of A = A’ = AT  =[Tex]

[1123]
[/Tex]

(iii) Let A =[Tex]

132553661
[/Tex]

∴Transpose of A = A’ = AT  =[Tex]

156356231
[/Tex]

Question 2. If A =[Tex]
152271391
    [/Tex] and B = [Tex]
411223501
 [/Tex] then verify that:

(i) (A+B)’ = A’+B’

(ii) (A-B)’ = A’- B’

Solution:

(i) A+B =[Tex]

152271391
+
411123501
=
145+12+12=17+21+3359+01+1
=
561394292
[/Tex]

L.H.S. = (A+B)’ = [Tex]

532699142
[/Tex]

R.H.S. = A’+B’ = [Tex]

122571211
+
415120131
=
142+1255+17+21+02+11+31+1
=
532699142
[/Tex]

∴L.H.S = R.H.S.

Hence, proved.

(ii) A-B = [Tex]

152271391
-
411223501
=
343152890
[/Tex]

L.H.S. = (A-B)’[Tex]=

318459320
[/Tex]

R.H.S. = A’-B’ =[Tex]

122571211
-
415120131
=
318459320
[/Tex]

∴ L.H.S. = R.H.S.

Hence, proved.

Question 3.  If A’ =[Tex]
310421
    [/Tex] and B = [Tex]
[112213]
 [/Tex], then verify that:

(i) (A+B)’=A’+B’

(ii) (A-B)’=A’-B’

Solution:

Given A’=[Tex]

310421
    [/Tex]and B=[Tex]
[112213]
[/Tex]

then, (A’)’ = A =[Tex]

[341201]
[/Tex]

(i) A+B =[Tex]

[341201]
+
[112213]
=
[251414]
[/Tex]

∴ L.H.S. =  (A+B)’=[Tex]

211544
[/Tex]

R.H.S.= A’+B’ = [Tex]

310421
+
121123
=
211544
[/Tex]

∴ L.H.S. = R.H.S.

Hence, proved.

(ii) A-B = [Tex]

[341201]
-
[112213]
=
[433012]
[/Tex]

∴ L.H.S. =  (A-B)’=[Tex]

431302
[/Tex]

R.H.S.= A’-B’ = [Tex]

310421
-
121123
=
431302
[/Tex]

∴ L.H.S. = R.H.S.

Hence, proved.

Question 4. If A’ = [Tex]
[2132]
     [/Tex]and B = [Tex]
[1102]
  [/Tex]then find (A+2B)’.

Solution:

Given: A’ =[Tex]

[2132]
     [/Tex]and B =[Tex]
[1102]
[/Tex]

then (A’)’ =A=[Tex]

[2132]
 [/Tex]

Now, A+2B = [Tex]

[2132]
+2
[1102]
=
[2132]
+
[2204]
=
[223+21+02+4]
=
[4516]
[/Tex]

∴(A+2B)’ = [Tex]

[4156]
[/Tex]

Question 5. For the matrices A and B, verify that (AB)′ = B′A′, where

(i) A =[Tex]

143
[/Tex] and B = [Tex]
[121]
[/Tex]

(ii) A =[Tex]

012
[/Tex] and B =[Tex]
[157]
[/Tex]

Solution:

(i) AB = =[Tex]

143
[121]
=
143286143
[/Tex]

∴  L.H.S. = (AB)′ =[Tex]

121484363
[/Tex]

R.H.S.= B′A’ = [Tex]

121
[143]
=
121484363
[/Tex]

∴ L.H.S. = R.H.S.

Hence, proved.

(ii) AB =[Tex]

012
[157]
=
01205100714
[/Tex]

∴  L.H.S. = (AB)′ =[Tex]

00015721014
[/Tex]

Now, R.H.S.=B’A’ = [Tex]

157
[012]
=
0001572714
[/Tex]

∴ L.H.S. = R.H.S.

Hence, proved.

Question 6. If (i) A =[Tex]
[cosαsinαsinαcosα]
    [/Tex]  , then verify that A′ A = I.

(ii) A =[Tex]
[sinαcosαcosαsinα]
    [/Tex]  ,then verify that A′ A = I.

Solution:

(i) [Tex]

[cosαsinαsinαcosα]
[cosαsinαsinαcosα]
=
[cos2α+sin2αsinαcosαcosαsinαcosαsinαsinαcosαsin2α+cos2α]
=
[1001]
[/Tex]

= I = R.H.S.

∴ L.H.S. = R.H.S.

(ii) [Tex]

[sinαcosαcosαsinα]
[sinαcosαcosαsinα]
=
[sin2α+sin2αcosαsinαsinαcosαsinαcosαcosαsinαcos2α+sin2α]
=
[1001]
[/Tex]

= I = R.H.S.

∴ L.H.S. = R.H.S.

Question 7. (i) Show that the matrix A[Tex]
115121513
    [/Tex] = is a symmetric matrix.

(ii) Show that the matrix A[Tex]
011101110
    [/Tex] = is a symmetric matrix.

(i) Given: A =[Tex]

115121513
    [/Tex]     

Now, A’=[Tex]

115121513
’=
115121513
    [/Tex] 

∵ A = A’

∴ A is a symmetric matrix.

(ii) Given: A = [Tex]

011101110
[/Tex]

Now, A’=[Tex]

011101110
’=
011101110
[/Tex]

∵ A = A’

∴ A is a symmetric matrix.

Question 8.  For the matrix A =[Tex]
[1657]
    [/Tex], verify that:

(i) (A + A′) is a symmetric matrix

(ii) (A – A′) is a skew symmetric matrix

Solution:

(i) Given: A =[Tex]

[1657]
[/Tex]

Let B = (A+A’) = [Tex]

[1657]
+
[1567]
=
[1+16+55+67+7]
=
[2111114]
[/Tex]

Now, B’ = (A+A’)’ = [Tex]

[2111114]
’=
[2111114]
[/Tex]

∵ B = B’

∴ B=(A+A’) is a symmetric matrix.

(ii) Given: A =[Tex]

[1657]
[/Tex]

Let B = (A-A’) =[Tex]

[1657]
-
[1567]
=
[11655677]
=
[0110]
[/Tex]

Now, B’ = (A-A’)’ =[Tex]

[0110]
’=
[0110]
=-
[0110]
[/Tex]

∵ -B = B’

∴ B=(A-A’) is a skew symmetric matrix.

Question 9. Find 1/2(A+A’) and 1/2(A-A’) ,when A =[Tex]
0aba0cbc0
    [/Tex].

Solution:

Given: A = [Tex]

0aba0cbc0
[/Tex]

∴  A’ = [Tex]

0aba0cbc0
’=
0aba0cbc0
[/Tex]

Now,  A+A’ = +[Tex]\frac{1}{2}\{

0aba0cbc0
+
0aba0cbc0
\}=\frac{1}{2}
0+0a+ab+baa0+0c+cbbcc0+0
=\frac{1}{2}
000000000
=
000000000
[/Tex]

Now, A-A’ =[Tex]\frac{1}{2}\{

0aba0cbc0
-
0aba0cbc0
\}=\frac{1}{2}
00aabba+a00ccb+bc+c00
=\frac{1}{2}
02a2b2a02c2b2c0
=
0aba0cbc0
[/Tex]

Question 10. Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

(i) [Tex]

[3151]
[/Tex]

(ii) [Tex]

622231213
[/Tex]

(iii) [Tex]

324325112
[/Tex]

(iv) [Tex]

[1152]
[/Tex]

Solution:

(i) Given : A =[Tex]

[3151]
[/Tex]

⇒ A’=[Tex]

[3511]
[/Tex]

Let P = [Tex]\frac{1}{2}(A+A’)[/Tex]

and Q = [Tex]\frac{1}{2}(A-A’)[/Tex]

Now, P =[Tex]\frac{1}{2} \{

[3151]
+
[3511]
\}=\frac{1}{2}
[6662]
=
[3331]
    [/Tex]…..(1)

& P’ = [Tex]

[3511]
’=
[3511]
[/Tex]

∵ P=P’

∴ P is a symmetric matrix.

Now, Q =[Tex]\frac{1}{2}(A-A’)=\frac{1}{2} \{

[3151]
-
[3511]
\}=\frac{1}{2}
[0440]
=
[0220]
    [/Tex]…..(2)

& Q’ = [Tex]

[0220]
’=-
[0220]
[/Tex]

∵ -Q=Q’ 

∴ Q is a skew symmetric matrix.

By adding (1) and (2), we get,

[Tex]

[3511]
+
[0220]
=
[3151]
[/Tex]

Therefore, A =P + Q

(ii) Given : [Tex]

622231213
[/Tex]

⇒ A’=[Tex]

622231213
[/Tex]

P = [Tex]\frac{1}{2}(A+A’)=\frac{1}{2}(

622231213
+
622231213
)=\frac{1}{2}
1244462426
=
622231213
[/Tex]

…..(1)

Q = [Tex]\frac{1}{2}(A-A’)=\frac{1}{2}(

622231213
-
622231213
)=\frac{1}{2}
000000000
=
000000000
[/Tex]

……(2)

By adding (1) and (2), we get,

000000000
[Tex]
622231213
+
000000000
=
622231213
[/Tex]

Therefore, A =P + Q

(iii) Given: A =[Tex]

324325112
[/Tex]

⇒ A’=[Tex]

331221452
[/Tex]

P = }[Tex]\frac{1}{2}(A+A’)=\frac{1}{2}(

324325112
+
331221452
)=
615144544
=
31/25/21/2225/222
    [/Tex]…..(1)

Q = [Tex]\frac{1}{2}(A-A’)=\frac{1}{2}(

324325112
-
331221452
)=\frac{1}{2}
053506360
=
05/23/25/2033/230
    [/Tex]……(2)

By adding (1) and (2), we get

}[Tex]

31/25/21/2225/222
+
05/23/25/2033/230
=
324325112
[/Tex]

Therefore, A =P + Q

(iv) Given: A = [Tex]

[1152]
[/Tex]

⇒ A’= [Tex]

[1512]
[/Tex]

P =[Tex]\frac{1}{2} \{

[1152]
+
[1512]
\}=\frac{1}{2}
[2444]
=
[1222]
[/Tex]

…..(1)

Q = [Tex]\frac{1}{2}(A-A’)=\frac{1}{2} \{

[1152]
-
[1512]
\}=\frac{1}{2}
[1512]
=
[0330]
[/Tex]

…..(2)

By adding (1) and (2), we get

[Tex]

[1222]
+
[0330]
=
[1152]
[/Tex]

Therefore, A =P + Q

Question 11. If A, B are symmetric matrices of same order, then AB – BA is a

(A) Skew symmetric matrix (B) Symmetric matrix

(C) Zero matrix (D) Identity matrix 

Solution:

Given: A and B are symmetric matrices.

⇒ A=A’

⇒ B=B’

Now, ( AB – BA)’ =(AB)’-(BA)’              [∵ (X-Y)’=X’-Y’]

                          =B’A’-A’B’                [∵ (XY)’=Y’X’]

                         =BA-AB                   [∵ Given]

                        = -(AB-BA)

∴(AB-BA) is a skew symmetric matrix.

∴ The option (A) is correct.

Question 12. If A =[Tex]
[cosαsinαsinαcosα]
   [/Tex], and A + A′ = I, then the value of α is

(A)π/6    (B) π/3

(C) π    (D)3π/2

Solution:

[Tex]

[cosαsinαsinαcosα]
+
[cosαsinαsinαcosα]
=
[1001]
[/Tex]

[Tex]

[2cosα002cosα]
=
[1001]
[/Tex]

On comparing both sides, we get

           2cosα = 1

⇒      cosα = [Tex]\frac{1}{2}[/Tex]

⇒      cosα = cos[Tex]\frac{π}{3}[/Tex]

⇒      α = [Tex]\frac{π}{3}[/Tex]

∴ The option (B) is correct.

Summary

Chapter 3 of the Class 12 NCERT Mathematics textbook, “Matrices,” explores essential concepts such as matrix operations and their applications. Exercise 3.3 focuses on practical problems involving matrix addition, subtraction, and multiplication. This exercise provides step-by-step solutions to help students understand and apply matrix operations effectively. Key topics include matrix addition and subtraction, matrix multiplication, determinants, and finding matrix inverses.

FAQs on Matrices

What are matrices, and why are they important in mathematics?

Matrices are rectangular arrays of numbers arranged in rows and columns. They are important in mathematics because they provide a systematic way to handle and solve systems of linear equations, perform linear transformations, and represent data in various applications.

Can matrices be multiplied if their dimensions do not match?

Matrices can only be multiplied if the number of columns in the first matrix is equal to the number of rows in the second matrix. If this condition is not met, matrix multiplication is not possible.

How do you find the inverse of a matrix, and when does a matrix have an inverse?

To find the inverse of a matrix A, the matrix must be square (same number of rows and columns) and have a non-zero determinant. The inverse of A can be found using various methods, such as the adjoint method or Gaussian elimination. The matrix A has an inverse if and only if its determinant is non-zero.

Comments

Popular posts from this blog

Symmetric & Skew Symmetric Matrix-Properties, Solved Examples, Class 12 Matrices Chapter Notes Study Material Download pdf

A symmetric matrix and skew-symmetric matrix both are square matrices. But the difference between them is, the symmetric matrix is equal to its transpose whereas skew-symmetric matrix is a matrix whose transpose is equal to its negative. If A is a symmetric matrix, then A = A T   and if A is a skew-symmetric matrix then A T  = – A. Table of Contents Symmetric Matrix Properties of Symmetric Matrix Skew Symmetric Matrix Properties of Skew Symmetric Matrix Determinant of Skew Symmetric Matrix Eigenvalue of Skew Symmetric Matrix Frequently Asked Questions-FAQs What is a symmetric matrix? How do you know if a matrix is symmetric? Give an Example of a Matrix Which is Symmetric but not Invertible. Is Symmetric Matrix Diagonalizable? What is skew-symmetric matrix? What is the difference between symmetric and skew-symmetric matrix? Symmetric Matrix To understand if a matrix is a symmetric matrix, it is very important to know about transpose of a matrix and how to find it. If we in...

Onto Functions(Surjective Functions)-Definition, Graph, Properties, Solved Examples, FAQs

  Onto Function is one of the many types of functions defined based on the relationship between its domain and codomain. For any function to be onto, it needs to relate two sets with a very specific mapping between elements, meaning that each element of the codomain has at least one element in the domain as its pre-image. In simple words, for any function, if all the elements of the codomain are mapped to some element of the domain, then the function is said to be an onto function.  In this article, we will discuss the concept of onto or surjective function in detail including its definition, example, and many more. We will also discuss key differences between one one, onto and into functions as well. Table of Contents What is an Onto Function? Onto Function Definition Representation for Onto Function Examples of Onto Function Properties of Onto Function Composition of Onto Function Onto Function Graph Number of Onto Functions One to One and Onto Functions Onto and Into Functi...

Transpose of a Matrix-Addition & Multiplication Property of Transpose, Solved Examples, Class 12 Matrices Chapter Notes Study Material Download pdf

Transpose of a matrix is one of the most commonly used methods in matrix transformation. For a given matrix, the transpose of a matrix is obtained by interchanging rows into columns or columns to rows. In this article, we are going to learn the definition of the transpose of a matrix, steps to find the transpose of a matrix, properties and examples with a complete explanation. Before learning how to find the transpose of a matrix, first let us learn, what a matrix is? Table of Contents What is a Matrix? Transpose of a Matrix Definition How to Find the Transpose of a Matrix? Properties of Transpose of a Matrix (i) Transpose of the Transpose Matrix (ii) Addition Property of Transpose (iii) Multiplication by Constant (iv) Multiplication Property of Transpose Transpose of a Matrix Examples Practice Problems Frequently Asked Questions What is the transpose of a matrix? How to calculate the transpose of a Matrix? What is the Addition Property of Transpose? What is the Multiplication Property...