Skip to main content

Properties of Inverse Trigonometric Functions-Formulas, Solved Examples, Class 12 Math Chapter 2 Notes Study Material Download free pdf

Inverse trigonometric functions, also known as arc functions, are used to find the angle that corresponds to a given trigonometric value. These functions are the inverses of the six main trigonometric functions: sine, cosine, tangent, cotangent, secant, and cosecant. In this article, we will explore the key properties of inverse trigonometric functions, including their domains, ranges, and unique characteristics.

What are Inverse Trigonometric Functions?

Inverse trigonometric functions are the inverse functions of the basic trigonometric functions, which are sine, cosine, tangent, cotangent, secant, and cosecant.

These functions are used to find the angle of a triangle from any of the trigonometric ratios. They are also known as arcus functions, anti-trigonometric functions, or cyclometric functions

Restriction on Trigonometric Functions

A real function in the range  ƒ : R ⇒ [-1 , 1]  defined by ƒ(x) = sin(x) is not a bijection since different images have the same image such as ƒ(0) = 0, ƒ(2π) = 0,ƒ(π) = 0, so, ƒ is not one-one. Since ƒ is not a bijection (because it is not one-one) therefore inverse does not exist.

To make a function bijective we can restrict the domain of the function to [−π/2, π/2] or [−π/2, 3π/2] or [−3π/2, 5π/2] after restriction of domain ƒ(x) = sin(x) is a bijection, therefore ƒ is invertible. i.e. to make sin(x) we can restrict it to the domain [−π/2, π/2] or [−π/2, 3π/2] or [−3π/2, 5π/2] or…….  but  [−π/2, π/2] is the Principal solution of sin θ, hence to make sin θ invertible.

Naturally, the domain [−π/2, π/2] should be considered if no other domain is mentioned. 

  • ƒ: [−π/2, π/2]
    • ⇒ [-1, 1]  is defined as ƒ(x) = sin(x) and is a bijection, hence inverse exists.
    • The inverse of sin-1 is also called arcsine and inverse functions are also called arc functions.
  • ƒ:[−π/2 , π/2] ⇒ [−1 , 1] is defined as sinθ = x ⇔ sin-1(x) = θ , θ belongs to [−π/2 , π/2] and x belongs to [−1 , 1].

Similarly, we restrict the domains of cos, tan, cot, sec, cosec so that they are invertible.

Domain and Range of Inverse Trigonometric Functions

Below are some inverse trigonometric functions with their domain and range.

FunctionDomainRange
sin-1[-1 , 1 ][−π/2 , π/2]
cos-1[-1 , 1 ][0 , π]
tan-1R[−π/2 , π/2] 
cot-1R[0 , π]
sec-1(-∞ , -1] U [1, ∞)[0 , π] − {π/2}
cosec-1(-∞ , -1] U [1 , ∞)[−π/2 , π/2] – {0}

Properties of Inverse Trigonometric Functions

There are various properties of inverse trigonometric functions that are discussed as follows:

Set 1: Properties of sin

1) sin(θ) = x  ⇔  sin-1(x) = θ , θ ∈ [ -π/2 , π/2 ], x ∈ [ -1 , 1 ]  

2) sin-1(sin(θ)) = θ , θ ∈ [ -π/2 , π/2 ]

3) sin(sin-1(x)) = x , x ∈ [ -1 , 1 ]

Examples:

  • sin(π/6) = 1/2 ⇒ sin-1(1/2) = π/6 
  • sin-1(sin(π/6)) = π/6
  • sin(sin-1(1/2)) = 1/2

Set 2: Properties of cos

4) cos(θ) = x  ⇔  cos-1(x) = θ , θ ∈ [ 0 , π ] , x ∈ [ -1 , 1 ]  

5) cos-1(cos(θ)) = θ , θ ∈ [ 0 , π ]

6) cos(cos-1(x)) = x , x ∈ [ -1 , 1 ]

Examples:

  • cos(π/6) = √3/2 ⇒ cos-1(√3/2) = π/6 
  • cos-1(cos(π/6)) = π/6
  • cos(cos-1(1/2)) = 1/2

Set 3: Properties of tan

7) tan(θ) = x  ⇔  tan-1(x) = θ , θ ∈ [ -π/2 , π/2 ] ,  x ∈ R

8) tan-1(tan(θ)) = θ , θ ∈ [ -π/2 , π/2 ]

9) tan(tan-1(x)) = x , x ∈ R

Examples:

  • tan(π/4) = 1 ⇒ tan-1(1) = π/4
  • tan-1(tan(π/4)) = π/4
  • tan(tan-1(1)) = 1

Set 4: Properties of cot

10) cot(θ) = x  ⇔  cot-1(x) = θ , θ ∈ [ 0 , π ] , x ∈ R

11) cot-1(cot(θ)) = θ , θ ∈ [ 0 , π ]

12) cot(cot-1(x)) = x , x ∈ R

Examples:

  • cot(π/4) = 1 ⇒ cot-1(1) = π/4
  • cot(cot-1(π/4)) = π/4
  • cot(cot(1)) = 1

Set 5: Properties of sec

13) sec(θ) = x ⇔ sec-1(x) = θ , θ ∈ [ 0 , π] – { π/2 } , x ∈ (-∞,-1]  ∪ [1,∞)

14) sec-1(sec(θ)) = θ , θ ∈ [ 0 , π] – { π/2 }

15) sec(sec-1(x)) = x , x ∈ ( -∞ , -1 ]  ∪ [ 1 , ∞ )

Examples:

  • sec(π/3) = 1/2 ⇒ sec-1(1/2) = π/3 
  • sec-1(sec(π/3)) = π/3
  • sec(sec-1(1/2)) = 1/2

Set 6: Properties of cosec

16) cosec(θ) = x ⇔ cosec-1(x) = θ , θ ∈ [ -π/2 , π/2 ] – { 0 } , x ∈ ( -∞ , -1 ] ∪ [ 1,∞ )

17) cosec-1(cosec(θ)) = θ , θ ∈[ -π/2 , π ] – { 0 }

18) cosec(cosec-1(x)) = x , x ∈ ( -∞,-1 ] ∪ [ 1,∞ )

Examples:

  • cosec(π/6) = 2 ⇒ cosec-1(2) = π/6 
  • cosec-1(cosec(π/6)) = π/6
  • cosec(cosec-1(2)) = 2

Set 7: Other inverse trigonometric formulas

19) sin-1(-x) = -sin-1(x) ,  x ∈ [ -1 , 1 ]  

20) cos-1(-x) = π – cos-1(x) , x ∈ [ -1 , 1 ]

21) tan-1(-x) = -tan-1(x) , x ∈ R

22) cot-1(-x) = π – cot-1(x) , x ∈ R

23) sec-1(-x) = π – sec-1(x) , x ∈ ( -∞ , -1 ] ∪ [ 1 , ∞ )

24) cosec-1(-x) = -cosec-1(x) , x ∈ ( -∞ , -1 ] ∪ [ 1 , ∞ )

Examples:

  • sin-1(-1/2) = -sin-1(1/2)
  • cos-1(-1/2) = π -cos-1(1/2)
  • tan-1(-1) =  π -tan(1)
  • cot-1(-1) = -cot-1(1)
  • sec-1(-2) = -sec-1

Set 8: Sum of two trigonometric functions

25) sin-1(x) + cos-1(x) = π/2 , x ∈ [ -1 , 1 ]

26) tan-1(x) + cot-1(x) = π/2 , x ∈ R

27) sec-1(x) + cosec-1(x) = π/2 , x ∈ ( -∞ , -1 ] ∪ [ 1 , ∞ )

Proof:

sin-1(x) + cos-1(x) = π/2 , x ∈ [ -1 , 1 ]

let sin-1(x) = y 

now, 

x = sin y = cos((π/2) − y)

⇒ cos-1(x) = (π/2) – y = (π/2) −sin-1(x)

so, sin-1(x) + cos-1(x) = π/2                                        

tan-1(x) + cot-1(x) = π/2 , x ∈ R

Let tan-1(x) = y

now, cot(π/2 − y) = x 

⇒ cot-1(x) = (π/2 − y)

tan-1(x) + cot-1(x) = y + π/2 − y

so, tan-1(x) + cot-1(x) = π/2 

Similarly, we can prove the theorem of the sum of arcsec and arccosec as well.

Set 9: Conversion of trigonometric functions 

28) sin-1(1/x) = cosec-1(x) , x≥1 or x≤−1

29) cos-1(1/x) = sec-1(x) , x ≥ 1 or x ≤ −1

30) tan-1(1/x) = −π + cot-1(x)

Proof:

sin-1(1/x) = cosec-1(x) , x ≥ 1 or x ≤ −1

let, x = cosec(y)

1/x = sin(y)

⇒ sin-1(1/x) = y

⇒ sin-1(1/x) = cosec-1(x)

Similarly, we can prove the theorem of arccos and arctan as well

Example:

sin-1(1/2) = cosec-1(2)

Set 10: Periodic functions conversion

arcsin(x) = (-1)n arcsin(x) + πn

arccos(x) = ±arc cos x + 2πn

arctan(x) = arctan(x) + πn

arccot(x) = arccot(x) + πn

where n = 0, ±1, ±2, . . .

FAQs on Properties of Inverse Trigonometric Functions

What are inverse trigonometric functions?

Inverse trigonometric functions find angles when given trigonometric values, reversing sine, cosine, tangent, etc.

What are the domains and ranges of inverse trigonometric functions?

  • Arcsine (sin⁻¹x): Domain [−1,1], Range [−π/2, π/2]
  • Arccosine (cos⁻¹x): Domain [−1,1], Range [0,π]
  • Arctangent (tan⁻¹x): Domain (−∞,∞), Range (−π/2, π/2)

What are the principal values of inverse trigonometric functions?

Principal values are the main output values within specified ranges for arcsine, arccosine, and arctangent.

What are the properties of arcsine (sin-1 x)?

Some of the properties of inverse of sin function are:

  • Domain: [−1, 1]
  • Range: [−π/2, π/2]
  • Odd Function: sin-1 (-x) = −sin-1 x

What are the properties of arccosine (cos-1 x)?

Some of the properties of inverse of cos function are:

  • Domain: [−1, 1]
  • Range: [0, π]
  • Not Odd: cos-1 (-x) = π − cos-1 x

What are the properties of arccosine (tan-1 x)?

Some of the properties of inverse of tan function are:

  • Domain: (−∞,∞)
  • Range: [−π/2, π/2]
  • Odd Function: tan-1 (-x) = − tan-1 x

Comments

Popular posts from this blog

Symmetric & Skew Symmetric Matrix-Properties, Solved Examples, Class 12 Matrices Chapter Notes Study Material Download pdf

A symmetric matrix and skew-symmetric matrix both are square matrices. But the difference between them is, the symmetric matrix is equal to its transpose whereas skew-symmetric matrix is a matrix whose transpose is equal to its negative. If A is a symmetric matrix, then A = A T   and if A is a skew-symmetric matrix then A T  = – A. Table of Contents Symmetric Matrix Properties of Symmetric Matrix Skew Symmetric Matrix Properties of Skew Symmetric Matrix Determinant of Skew Symmetric Matrix Eigenvalue of Skew Symmetric Matrix Frequently Asked Questions-FAQs What is a symmetric matrix? How do you know if a matrix is symmetric? Give an Example of a Matrix Which is Symmetric but not Invertible. Is Symmetric Matrix Diagonalizable? What is skew-symmetric matrix? What is the difference between symmetric and skew-symmetric matrix? Symmetric Matrix To understand if a matrix is a symmetric matrix, it is very important to know about transpose of a matrix and how to find it. If we in...

Onto Functions(Surjective Functions)-Definition, Graph, Properties, Solved Examples, FAQs

  Onto Function is one of the many types of functions defined based on the relationship between its domain and codomain. For any function to be onto, it needs to relate two sets with a very specific mapping between elements, meaning that each element of the codomain has at least one element in the domain as its pre-image. In simple words, for any function, if all the elements of the codomain are mapped to some element of the domain, then the function is said to be an onto function.  In this article, we will discuss the concept of onto or surjective function in detail including its definition, example, and many more. We will also discuss key differences between one one, onto and into functions as well. Table of Contents What is an Onto Function? Onto Function Definition Representation for Onto Function Examples of Onto Function Properties of Onto Function Composition of Onto Function Onto Function Graph Number of Onto Functions One to One and Onto Functions Onto and Into Functi...

Transpose of a Matrix-Addition & Multiplication Property of Transpose, Solved Examples, Class 12 Matrices Chapter Notes Study Material Download pdf

Transpose of a matrix is one of the most commonly used methods in matrix transformation. For a given matrix, the transpose of a matrix is obtained by interchanging rows into columns or columns to rows. In this article, we are going to learn the definition of the transpose of a matrix, steps to find the transpose of a matrix, properties and examples with a complete explanation. Before learning how to find the transpose of a matrix, first let us learn, what a matrix is? Table of Contents What is a Matrix? Transpose of a Matrix Definition How to Find the Transpose of a Matrix? Properties of Transpose of a Matrix (i) Transpose of the Transpose Matrix (ii) Addition Property of Transpose (iii) Multiplication by Constant (iv) Multiplication Property of Transpose Transpose of a Matrix Examples Practice Problems Frequently Asked Questions What is the transpose of a matrix? How to calculate the transpose of a Matrix? What is the Addition Property of Transpose? What is the Multiplication Property...